exponential relationship - Definition. Was ist exponential relationship
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist exponential relationship - definition

HOLOMORPHIC FUNCTION WITH GROWTH BOUNDED BY AN EXPONENTIAL FUNCTION
Exponential Type; User:Mkelly86/Exponential Type
  • The graph of the function in gray is <math>e^{-\pi z^{2}}</math>, the Gaussian restricted to the real axis. The Gaussian does not have exponential type, but the functions in red and blue are one sided approximations that have exponential type <math>2\pi</math>.

exponential function         
  • The red curve is the exponential function.  The black horizontal lines show where it crosses the green vertical lines.
  • The exponential function e^z plotted in the complex plane from -2-2i to 2+2i
MATHEMATICAL FUNCTION WITH A CONSTANT BASE AND A VARIABLE EXPONENT, DENOTED EXP_A(X) OR A^X
Complex exponential function; Complex exponential; Natural exponential function; E^x; Exp(x); Exp (programming); Complex exponentials; Real exponential function; E**x; E to the x; Cb^x; Exponential Function; Exponential equation; Exponential equations; ⅇ; Natural exponent; Exponential minus 1 function; Exponential minus 1; Expm1; Exp-1; Exp1m; Expm1(x); Exp1m(x); Natural exponential minus 1; Natural exponential; E^X-1; E^x-1; Exp(x)-1; Base e antilogarithm; Exponent of e; Base e anti-logarithm; Exponential minus one function; Exponential minus one; Natural exponential minus one; Natural exponential minus one function; Exponential near 0; Exponential near zero; Natural exponential near 0; Natural exponential near zero; Eˣ-1; Eˣ - 1; Eˣ; Eˣ−1; Eˣ − 1; E^x−1; Exp(x)−1; Exponential base
¦ noun Mathematics a function whose value is a constant raised to the power of the argument, especially the function where the constant is e.
amorous         
  • Teresa Cristina]] in [[Petrópolis]], 1887
  • Men kissing intimately.
  • Bonding]] between a mother and child.
  • Holding hands is an example of affective intimacy between humans.
  • Personal intimate relationship is often crowned with marriage.
PHYSICAL OR EMOTIONAL INTIMACY
Sexual relationship; Intimacy; Personal relationship; Kanoodling; Long-term relationship; Lover's; Stages of Intimate Relationships; Beloved (love); Human intimacy; Sexual relationships; Intimate relationships; Synchronised Adoration; Amorous; Long term relationship; Intimate partner; Serious relationship; Couple (relationship); Emotional relationship; Emotional relation; Long relationship; Couplehood
If you describe someone's feelings or actions as amorous, you mean that they involve sexual desire.
ADJ: usu ADJ n
Intimacy         
  • Teresa Cristina]] in [[Petrópolis]], 1887
  • Men kissing intimately.
  • Bonding]] between a mother and child.
  • Holding hands is an example of affective intimacy between humans.
  • Personal intimate relationship is often crowned with marriage.
PHYSICAL OR EMOTIONAL INTIMACY
Sexual relationship; Intimacy; Personal relationship; Kanoodling; Long-term relationship; Lover's; Stages of Intimate Relationships; Beloved (love); Human intimacy; Sexual relationships; Intimate relationships; Synchronised Adoration; Amorous; Long term relationship; Intimate partner; Serious relationship; Couple (relationship); Emotional relationship; Emotional relation; Long relationship; Couplehood
·noun The state of being intimate; close familiarity or association; nearness in friendship.

Wikipedia

Exponential type

In complex analysis, a branch of mathematics, a holomorphic function is said to be of exponential type C if its growth is bounded by the exponential function eC|z| for some real-valued constant C as |z| → ∞. When a function is bounded in this way, it is then possible to express it as certain kinds of convergent summations over a series of other complex functions, as well as understanding when it is possible to apply techniques such as Borel summation, or, for example, to apply the Mellin transform, or to perform approximations using the Euler–Maclaurin formula. The general case is handled by Nachbin's theorem, which defines the analogous notion of Ψ-type for a general function Ψ(z) as opposed to ez.